Resonance interpretation of the nonmonotonic behavior in the cross section of ϕ photoproduction near threshold

The 8th International Workshop on the Physics of Excited Nucleons

Jefferson Lab, May 17 - 20, 2011

Alvin Stanza Kiswandhi Shin Nan Yang

Department of Physics, National Taiwan University Taipei 10617, Taiwan Center for Theoretical Sciences, National Taiwan University Taipei 10617, Taiwan

Motivation

• Analysis of differential cross-section (DCS) of phi photoproduction at forward angle by Mibe and Chang, et.al. (Phys. Rev. Lett. 95 182001 (2005)) shows the presence of a local peak near threshold (E_{γ} around 2.0 GeV).

 \longrightarrow Seen also by Tedeschi et.al.: unpublished, but shown in some talks.

We would like to see whether the local peak in the differential cross section (DCS) of φ photoproduction at forward angle can be explained as a resonance since the conventional model of Pomeron plus π and η exchanges usually can only give rise to a monotonically-increasing behavior.

Reaction model

• Here are the **tree-level diagrams** calculated in our model

• Throughout this presentation,

- $-p_i$ is the 4-momentum of the **proton** in the **initial** state,
- -k is the 4-momentum of the **photon** in the **initial** state,
- $-p_f$ is the 4-momentum of the **proton** in the **final** state,
- -q is the 4-momentum of the ϕ in the **final** state.

Pomeron exchange

• We use **Donnachie-Landshoff two-gluon exchange** model

$$i\mathcal{M} = i\bar{u}_f(p_f)\epsilon_{\phi}^{*\mu}M_{\mu\nu}u_i(p_i)\epsilon_{\gamma}^{\nu}$$

$$M_{\mu\nu} = M(s,t)\Gamma_{\mu\nu}$$

with

$$M(s,t) = C_P F_1(t) F_2(t) \frac{1}{s} \left(\frac{s - s_{th}}{4}\right)^{\alpha_P(t)} \exp\left[-i\pi\alpha_P(t)/2\right]$$

Here, $\Gamma^{\mu\nu}$ is chosen to maintain **gauge invariance**

• Here

$$F_{1}(t) = \frac{4m_{N}^{2} - 2.8t}{(4m_{N}^{2} - t)(1 - t/0.7)^{2}}$$

$$F_{2}(t) = \frac{2\mu_{0}^{2}}{(1 - t/M_{\phi}^{2})(2\mu_{0}^{2} + M_{\phi}^{2} - t)}; \quad \mu_{0}^{2} = 1.1 \text{ GeV}^{2}$$

 $F_1(t)$ is the isoscalar EM form-factor of the nucleon, and $F_2(t)$ is the form-factor for the ϕ - γ -Pomeron coupling, and the pomeron trajectory is

$$\alpha_P = 1.08 + 0.25t$$

- The strength factor $C_P = 3.65$ is chosen to fit the total cross sections data at high energy.
- The threshold factor $s_{th} = 1.3 \text{ GeV}^2$ is chosen to match the forward differential cross sections data at around $E_{\gamma} = 6$ GeV.

π and η exchanges

• For t-channel exchange involving π and η , we use

$$\mathcal{L}_{\gamma\phi M} = \frac{eg_{\gamma\phi M}}{m_{\phi}} \epsilon^{\mu\nu\alpha\beta} \partial_{\mu}\phi_{\nu}\partial_{\alpha}A_{\beta}\varphi_{M}$$
$$\mathcal{L}_{MNN} = \frac{g_{MNN}}{2M_{N}} \bar{\psi}\gamma^{\mu}\gamma^{5}\psi\partial_{\mu}\varphi_{M}$$

with $M = (\pi, \eta)$.

- We choose $g_{\pi NN} = 13.26$, $g_{\eta NN} = 1.12$, $g_{\gamma\phi\pi} = -0.14$, and $g_{\gamma\phi\eta} = -0.71$.
- Form factor at **each vertex** in the *t*-channel diagram is

$$F_{MNN}(t) = F_{\gamma\phi M}(t) = \frac{\Lambda_M^2 - m_M^2}{\Lambda_M^2 - t}$$

• The value $\Lambda_M = 1.2$ is taken for **both** $M = (\pi, \eta)$.

Resonances

- Only spin 1/2 or 3/2 because the resonance is close to the threshold.
- Lagrangian densities that couple spin-1/2 and 3/2 particles to γN or ϕN channels are

$$\begin{aligned} \mathcal{L}_{\phi N N^{*}}^{1/2^{\pm}} &= g_{\phi N N^{*}}^{(1)} \bar{\psi}_{N} \Gamma^{\pm} \gamma^{\mu} \psi_{N^{*}} \phi_{\mu} + g_{\phi N N^{*}}^{(2)} \bar{\psi}_{N} \Gamma^{\pm} \sigma_{\mu\nu} G^{\mu\nu} \psi_{N^{*}}, \\ \mathcal{L}_{\phi N N^{*}}^{3/2^{\pm}} &= i g_{\phi N N^{*}}^{(1)} \bar{\psi}_{N} \Gamma^{\pm} \left(\partial^{\mu} \psi_{N^{*}}^{\nu} \right) \tilde{G}_{\mu\nu} + g_{\phi N N^{*}}^{(2)} \bar{\psi}_{N} \Gamma^{\pm} \gamma^{5} \left(\partial^{\mu} \psi_{N^{*}}^{\nu} \right) G_{\mu\nu} \\ &+ i g_{\phi N N^{*}}^{(3)} \bar{\psi}_{N} \Gamma^{\pm} \gamma^{5} \gamma_{\alpha} \left(\partial^{\alpha} \psi_{N^{*}}^{\nu} - \partial^{\nu} \psi_{N^{*}}^{\alpha} \right) \left(\partial^{\mu} G_{\mu\nu} \right), \end{aligned}$$

where $G_{\mu\nu} = \partial_{\mu}\phi_{\nu} - \partial_{\nu}\phi_{\mu}$ and $\tilde{G}_{\mu\nu} = \frac{1}{2}\epsilon_{\mu\nu\alpha\beta}G^{\alpha\beta}$. The operator Γ^{\pm} are given by $\Gamma^{+} = 1$ and $\Gamma^{-} = \gamma_{5}$, depending on the parity of the resonance N^{*} .

• For the γNN^* vertices, simply change $g_{\phi NN^*} \to eg_{\gamma NN^*}$ and $\phi_{\mu} \to A_{\mu}$.

- Current conservation fixes $g_{\gamma NN^*}^{(1)} \to 0$ for $J^P = 1/2^{\pm}$ and the term proportional to $g_{\gamma NN^*}^{(3)}$ vanishes in the case of real photon.
- The effect of the width is taken into account in a Breit-Wigner form by replacing the usual denominator $p^2 - M_{N^*}^2 \rightarrow p^2 - M_{N^*}^2 + iM_{N^*}\Gamma_{N^*}$.
- The form factor for the vertices used in the *s* and *u* channel diagrams is

$$F_{N^*}(p^2) = \frac{\Lambda^4}{\Lambda^4 + (p^2 - M_{N^*}^2)^2} \tag{1}$$

with $\Lambda = 1.2$ GeV for all resonances.

Fitting to experimental data

- We include only **one resonance at a time**.
- We fit only **masses**, **widths**, and **coupling constants** of the resonances to the experimental data, while **other parameters are fixed** during fitting.
- Experimental data to fit
 - Differential cross sections (DCS) at forward angle (LEPS 2005)
 - **DCS as a function of** t at eight incoming photon energy bins (LEPS 2005)
 - Nine spin-density matrix elements (SDME) at three incoming photon energy bins (New LEPS 2010)
- In our previous work [PLB 691 (2010) 214-218], instead of the new 2010 SDME data, we used five decay angular distributions of K^+K^- pair at two incoming photon energy bins.
- Note that decay angular distributions are functions of SDME.

Results

- Both $J^P = 1/2^{\pm}$ resonances **cannot fit the data**.
- DCS at forward angle and as a function of t are markedly improved by the inclusion of the $J^P = 3/2^{\pm}$ resonances.
- In general, **SDME are also improved** by both $J^P = 3/2^{\pm}$ resonances.

DCS at forward angle

Black $\rightarrow J^P = 3/2^-$ **Red** $\rightarrow J^P = 3/2^+$ Full \rightarrow total, Nonresonant \rightarrow dotted, Resonant \rightarrow dashed

●First ●Prev ●Next ●Last ●Go Back ●Full Screen ●Close ●Quit

DCS as a function of t

Black $\rightarrow J^P = 3/2^-$ **Red** $\rightarrow J^P = 3/2^+$ Full \rightarrow total, Nonresonant \rightarrow dotted, Resonant \rightarrow dashed **SDME** as a function of t

 $1.77 < E_{\gamma} < 1.97 \text{ GeV}$

•First ●Prev ●Next ●Last ●Go Back ●Full Screen ●Close ●Quit

SDME as a function of t

 $1.97 < E_{\gamma} < 2.17 \text{ GeV}$

•First ●Prev ●Next ●Last ●Go Back ●Full Screen ●Close ●Quit

SDME as a function of t

 $2.17 < E_{\gamma} < 2.37 \text{ GeV}$

First ●Prev ●Next ●Last ●Go Back ●Full Screen ●Close ●Quit

	$J^P = 3/2^+$		$J^P = 3/2^-$	
	This work	Previous work	This work	Previous work
$M_{N^*}(\text{GeV})$	2.08 ± 0.032	2.05 ± 0.06	2.08 ± 0.048	2.10 ± 0.03
$\Gamma_{N^*}(\text{GeV})$	0.501 ± 0.111	0.450 ± 0.111	0.570 ± 0.169	0.465 ± 0.141
$eg^{(1)}_{\gamma NN^*}g^{(1)}_{\phi NN^*}$	0.003 ± 0.009	0.000 ± 0.008	-0.205 ± 0.095	-0.186 ± 0.079
$eg^{(1)}_{\gamma NN^*}g^{(2)}_{\phi NN^*}$	-0.084 ± 0.057	-0.410 ± 0.185	-0.025 ± 0.017	-0.015 ± 0.030
$eg^{(1)}_{\gamma NN^*}g^{(3)}_{\phi NN^*}$	0.025 ± 0.071	-0.318 ± 0.156	-0.033 ± 0.018	-0.02 ± 0.032
$eg^{(2)}_{\gamma NN^*}g^{(1)}_{\phi NN^*}$	0.002	0.000 ± 0.002	-0.266	-0.212 ± 0.076
$eg^{(2)}_{\gamma NN^*}g^{(2)}_{\phi NN^*}$	-0.048	-0.100 ± 0.037	-0.033	-0.017 ± 0.035
$eg^{(2)}_{\gamma NN^*}g^{(3)}_{\phi NN^*}$	0.014	-0.078 ± 0.031	-0.043	-0.025 ± 0.037
χ^2/N	0.955	1.066	0.881	0.983

- The ratio $A_{1/2}/A_{3/2} = 1.05$ (previous work 1.16) for the $J^P = 3/2^-$ resonance.
- The ratio $A_{1/2}/A_{3/2} = 0.89$ (previous work 0.69) for the $J^P = 3/2^+$ resonance.

- We found that $J^P = 3/2^-$ resonance parameters are **very close** to our previous work.
- On the other hand, $J^P = 3/2^+$ resonance parameters are mostly **different**, especially the coupling constants.
- We prefer $J^P = 3/2^-$ based on the **stability of the extracted** resonance parameters across different sets of experimental data. \longrightarrow cannot be identified with $D_{13}(2080)$ (PDG lists $A_{1/2}/A_{3/2} = -1.18$)

Effects on ω photoproduction

- From the $\phi \omega$ mixing, we expect the resonance to also contribute to ω photoproduction.
- The coupling constants $g_{\phi NN^*}$ and $g_{\omega NN^*}$ are **related**, and in our study we choose to use the so-called "**minimal**" **parametrization**,

$$g_{\phi NN^*} = - \mathrm{tan} \Delta \theta_V x_{\mathrm{OZI}} g_{\omega NN^*}$$

- By using x_{OZI} = 12 for the J^P = 3/2⁻ resonance and x_{OZI} = 9 for the J^P = 3/2⁺ resonance, we found that we can explain quite well the DCS of ω photoproduction at W = 2.015 GeV.
- The large value of x_{ozi} indicates that the resonance has a considerable amount of strangeness content.

DCS of ω photoproduction as a function of t

Data from M. Williams, Phys.Rev.C.80, 065209 (2009)

Predictions for single polarization observables

First \bullet Prev \bullet Next \bullet Last \bullet Go Back \bullet Full Screen \bullet Close \bullet Quin

Predictions for double polarization observables

Summary and conclusions

- Inclusion of a resonance is needed to explain the nonmonotonic behavior in the DCS of ϕ -meson photoproduction near threshold.
- Resonance with $J^P = 3/2^-$ is preferred in this study.
- The resonance seems to have a **considerable amount of strangeness content**.
- $D_{13}(2080)$ is ruled out based on the different sign of $A_{1/2}/A_{3/2}$.
- Further experiments, e.g. measurement of **single and double polarizations**, would be helpful to check our predictions.

THANK YOU!

●First ●Prev ●Next ●Last ●Go Back ●Full Screen ●Close ●Qui