Resonance interpretation of the

 nonmonotonic behavior in the cross section of ϕ photoproduction near thresholdThe 8th International Workshop on the Physics of Excited Nucleons

Jefferson Lab, May 17-20, 2011

Alvin Stanza Kiswandhi Shin Nan Yang

Department of Physics, National Taiwan University Taipei 10617, Taiwan
Center for Theoretical Sciences, National Taiwan University Taipei 10617, Taiwan

Motivation

- Analysis of differential cross-section (DCS) of phi photoproduction at forward angle by Mibe and Chang, et.al. (Phys. Rev. Lett. 95182001 (2005)) shows the presence of a local peak near threshold (E_{γ} around 2.0 GeV).
\longrightarrow Seen also by Tedeschi et.al.: unpublished, but shown in some talks.
- We would like to see whether the local peak in the differential cross section (DCS) of ϕ photoproduction at forward angle can be explained as a resonance since the conventional model of Pomeron plus π and η exchanges usually can only give rise to a monotonically-increasing behavior.

Reaction model

- Here are the tree-level diagrams calculated in our model

(b)

(c)

(d)
- Throughout this presentation,
$-p_{i}$ is the 4 -momentum of the proton in the initial state,
$-k$ is the 4 -momentum of the photon in the initial state,
$-p_{f}$ is the 4 -momentum of the proton in the final state,
$-q$ is the 4 -momentum of the ϕ in the final state.

Pomeron exchange

- We use Donnachie-Landshoff two-gluon exchange model

$$
\begin{gathered}
i \mathcal{M}=i \bar{u}_{f}\left(p_{f}\right) \epsilon_{\phi}^{* \mu} M_{\mu \nu} u_{i}\left(p_{i}\right) \epsilon_{\gamma}^{\nu} \\
M_{\mu \nu}=M(s, t) \Gamma_{\mu \nu}
\end{gathered}
$$

with

$$
\begin{aligned}
M(s, t) & =C_{P} F_{1}(t) F_{2}(t) \frac{1}{s}\left(\frac{s-s_{t h}}{4}\right)^{\alpha_{P}(t)} \exp \left[-i \pi \alpha_{P}(t) / 2\right] \\
\Gamma_{\mu \nu} & =\nLeftarrow\left(g_{\mu \nu}-\frac{q_{\mu} q_{\nu}}{q^{2}}\right)-\gamma_{\nu}\left(k_{\mu}-q_{\mu} \frac{k \cdot q}{q^{2}}\right) \\
& -\left(q_{\nu}-\bar{p}_{\nu} \frac{k \cdot q}{p \cdot k}\right)\left(\gamma_{\mu}-\not q \frac{q_{\mu}}{q^{2}}\right) \quad ; \quad \bar{p}=\frac{1}{2}\left(p_{f}+p_{i}\right)
\end{aligned}
$$

Here, $\Gamma^{\mu \nu}$ is chosen to maintain gauge invariance

- Here

$$
\begin{aligned}
& F_{1}(t)=\frac{4 m_{N}^{2}-2.8 t}{\left(4 m_{N}^{2}-t\right)(1-t / 0.7)^{2}} \\
& F_{2}(t)=\frac{2 \mu_{0}^{2}}{\left(1-t / M_{\phi}^{2}\right)\left(2 \mu_{0}^{2}+M_{\phi}^{2}-t\right)} ; \quad \mu_{0}^{2}=1.1 \mathrm{GeV}^{2}
\end{aligned}
$$

$F_{1}(t)$ is the isoscalar EM form-factor of the nucleon, and $F_{2}(t)$ is the form-factor for the $\phi-\gamma$-Pomeron coupling, and the pomeron trajectory is

$$
\alpha_{P}=1.08+0.25 t
$$

- The strength factor $C_{P}=3.65$ is chosen to fit the total cross sections data at high energy.
- The threshold factor $s_{\text {th }}=1.3 \mathrm{GeV}^{2}$ is chosen to match the forward differential cross sections data at around $E_{\gamma}=6$ GeV.

π and η exchanges

- For t-channel exchange involving π and η, we use

$$
\begin{aligned}
\mathcal{L}_{\gamma \phi M} & =\frac{e g_{\gamma \phi M}}{m_{\phi}} \epsilon^{\mu \nu \alpha \beta} \partial_{\mu} \phi_{\nu} \partial_{\alpha} A_{\beta} \varphi_{M} \\
\mathcal{L}_{M N N} & =\frac{g_{M N N}}{2 M_{N}} \bar{\psi} \gamma^{\mu} \gamma^{5} \psi \partial_{\mu} \varphi_{M}
\end{aligned}
$$

with $M=(\pi, \eta)$.

- We choose $g_{\pi N N}=13.26, g_{\eta N N}=1.12, g_{\gamma \phi \pi}=-0.14$, and $g_{\gamma \phi \eta}=-0.71$.
- Form factor at each vertex in the t-channel diagram is

$$
F_{M N N}(t)=F_{\gamma \phi M}(t)=\frac{\Lambda_{M}^{2}-m_{M}^{2}}{\Lambda_{M}^{2}-t}
$$

- The value $\Lambda_{M}=1.2$ is taken for both $M=(\pi, \eta)$.

Resonances

- Only spin $1 / 2$ or $3 / 2$ because the resonance is close to the threshold.
- Lagrangian densities that couple spin-1/2 and 3/2 particles to γN or ϕN channels are
$\mathcal{L}_{\phi N N^{*}}^{1 / 2^{ \pm}}=g_{\phi N N^{*}}^{(1)} \bar{\psi}_{N} \Gamma^{ \pm} \gamma^{\mu} \psi_{N^{*}} \phi_{\mu}+g_{\phi N N^{*}}^{(2)} \bar{\psi}_{N} \Gamma^{ \pm} \sigma_{\mu \nu} G^{\mu \nu} \psi_{N^{*}}$,
$\mathcal{L}_{\phi N N^{*}}^{3 / 2^{ \pm}}=i g_{\phi N N^{*}}^{(1)} \bar{\psi}_{N} \Gamma^{ \pm}\left(\partial^{\mu} \psi_{N^{*}}^{\nu}\right) \tilde{G}_{\mu \nu}+g_{\phi N N^{*}}^{(2)} \bar{\psi}_{N} \Gamma^{ \pm} \gamma^{5}\left(\partial^{\mu} \psi_{N^{*}}^{\nu}\right) G_{\mu \nu}$

$$
+i g_{\phi N N^{*}}^{(3)} \bar{\psi}_{N} \Gamma^{ \pm} \gamma^{5} \gamma_{\alpha}\left(\partial^{\alpha} \psi_{N^{*}}^{\nu}-\partial^{\nu} \psi_{N^{*}}^{\alpha}\right)\left(\partial^{\mu} G_{\mu \nu}\right),
$$

where $G_{\mu \nu}=\partial_{\mu} \phi_{\nu}-\partial_{\nu} \phi_{\mu}$ and $\tilde{G}_{\mu \nu}=\frac{1}{2} \epsilon_{\mu \nu \alpha \beta} G^{\alpha \beta}$. The operator $\Gamma^{ \pm}$are given by $\Gamma^{+}=1$ and $\Gamma^{-}=\gamma_{5}$, depending on the parity of the resonance N^{*}.

- For the $\gamma N N^{*}$ vertices, simply change $g_{\phi N N^{*}} \rightarrow e g_{\gamma N N^{*}}$ and $\phi_{\mu} \rightarrow A_{\mu}$.
- Current conservation fixes $g_{\gamma N N^{*}}^{(1)} \rightarrow 0$ for $J^{P}=1 / 2^{ \pm}$and the term proportional to $g_{\gamma N N^{*}}^{(3)}$ vanishes in the case of real photon.
- The effect of the width is taken into account in a BreitWigner form by replacing the usual denominator $p^{2}-M_{N^{*}}^{2} \rightarrow$ $p^{2}-M_{N^{*}}^{2}+i M_{N^{*}} \Gamma_{N^{*}}$.
- The form factor for the vertices used in the s - and u channel diagrams is

$$
\begin{equation*}
F_{N^{*}}\left(p^{2}\right)=\frac{\Lambda^{4}}{\Lambda^{4}+\left(p^{2}-M_{N^{*}}^{2}\right)^{2}} \tag{1}
\end{equation*}
$$

with $\Lambda=1.2 \mathrm{GeV}$ for all resonances.

Fitting to experimental data

- We include only one resonance at a time.
- We fit only masses, widths, and coupling constants of the resonances to the experimental data, while other parameters are fixed during fitting.
- Experimental data to fit
- Differential cross sections (DCS) at forward angle (LEPS 2005)
- DCS as a function of t at eight incoming photon energy bins (LEPS 2005)
- Nine spin-density matrix elements (SDME) at three incoming photon energy bins (New LEPS 2010)
- In our previous work [PLB 691 (2010) 214-218], instead of the new 2010 SDME data, we used five decay angular distributions of $K^{+} K^{-}$pair at two incoming photon energy bins.
- Note that decay angular distributions are functions of SDME.

Results

- Both $J^{P}=1 / 2^{ \pm}$resonances cannot fit the data.
- DCS at forward angle and as a function of t are markedly improved by the inclusion of the $J^{P}=3 / 2^{ \pm}$resonances.
- In general, SDME are also improved by both $J^{P}=3 / 2^{ \pm}$ resonances.

DCS at forward angle

Black $\rightarrow J^{P}=3 / 2^{-} \operatorname{Red} \rightarrow J^{P}=3 / 2^{+}$
Full \rightarrow total, Nonresonant \rightarrow dotted, Resonant \rightarrow dashed

DCS as a function of t

Black $\rightarrow J^{P}=3 / 2^{-} \operatorname{Red} \rightarrow J^{P}=3 / 2^{+}$
Full \rightarrow total, Nonresonant \rightarrow dotted, Resonant \rightarrow dashed

SDME as a function of t

$1.77<\mathrm{E}_{\gamma}<1.97 \mathrm{GeV}$

SDME as a function of t

$$
1.97<\mathrm{E}_{\gamma}<2.17 \mathrm{GeV}
$$

SDME as a function of t

$$
2.17<\mathrm{E}_{\gamma}<2.37 \mathrm{GeV}
$$

	$J^{P}=3 / 2^{+}$		$J^{P}=3 / 2^{-}$	
	This work	Previous work	This work	Previous work
$M_{N^{*}}(\mathrm{GeV})$	2.08 ± 0.032	2.05 ± 0.06	2.08 ± 0.048	2.10 ± 0.03
$\Gamma_{N^{*}}(\mathrm{GeV})$	0.501 ± 0.111	0.450 ± 0.111	0.570 ± 0.169	0.465 ± 0.141
$e g_{\gamma N N^{*}}^{(1)} g_{\phi N N^{*}}^{(1)}$	0.003 ± 0.009	0.000 ± 0.008	-0.205 ± 0.095	-0.186 ± 0.079
$e g_{\gamma N N^{*}}^{(1)} g_{\phi N N^{*}}^{(2)}$	-0.084 ± 0.057	-0.410 ± 0.185	-0.025 ± 0.017	-0.015 ± 0.030
$e g_{\gamma N N^{*}}^{(1)} g_{\phi N N^{*}}^{(3)}$	0.025 ± 0.071	-0.318 ± 0.156	-0.033 ± 0.018	-0.02 ± 0.032
$e g_{\gamma N N^{*}}^{(2)} g_{\phi N N^{*}}^{(1)}$	0.002	0.000 ± 0.002	-0.266	-0.212 ± 0.076
$e g_{\gamma N N^{*}}^{(2)} g_{\phi N N^{*}}^{(2)}$	-0.048	-0.100 ± 0.037	-0.033	-0.017 ± 0.035
$e g_{\gamma N N^{*}}^{(2)} g_{\phi N N^{*}}^{(3)}$	0.014	-0.078 ± 0.031	-0.043	-0.025 ± 0.037
χ^{2} / N	0.955	1.066	0.881	0.983

- The ratio $A_{1 / 2} / A_{3 / 2}=1.05$ (previous work 1.16) for the $J^{P}=$ $3 / 2^{-}$resonance.
- The ratio $A_{1 / 2} / A_{3 / 2}=0.89$ (previous work 0.69) for the $J^{P}=$ $3 / 2^{+}$resonance.
- We found that $J^{P}=3 / 2^{-}$resonance parameters are very close to our previous work.
- On the other hand, $J^{P}=3 / 2^{+}$resonance parameters are mostly different, especially the coupling constants.
- We prefer $J^{P}=3 / 2^{-}$based on the stability of the extracted resonance parameters across different sets of experimental data. \longrightarrow cannot be identified with $D_{13}(2080)$ (PDG lists $\left.A_{1 / 2} / A_{3 / 2}=-1.18\right)$

Effects on ω photoproduction

- From the $\phi-\omega$ mixing, we expect the resonance to also contribute to ω photoproduction.
- The coupling constants $g_{\phi N N^{*}}$ and $g_{\omega N N^{*}}$ are related, and in our study we choose to use the so-called "minimal" parametrization,

$$
g_{\phi N N^{*}}=-\tan \Delta \theta_{V} x_{\mathrm{ozi}} g_{\omega N N^{*}}
$$

- By using $x_{\text {ozi }}=12$ for the $J^{P}=3 / 2^{-}$resonance and $x_{\text {ozi }}=9$ for the $J^{P}=3 / 2^{+}$resonance, we found that we can explain quite well the DCS of ω photoproduction at $W=2.015$ GeV.
- The large value of $x_{\text {ozi }}$ indicates that the resonance has a considerable amount of strangeness content.

DCS of ω photoproduction as a function of t

Data from M. Williams, Phys.Rev.C.80, 065209 (2009)

Predictions for single polarization observables

$$
\begin{array}{ll}
0.35
\end{array}
$$

Predictions for double polarization observables

$C_{y x}^{B T}=\frac{d \sigma^{(\theta=-\pi / 4,+x ; U, U)}-d \sigma^{(\theta=-\pi / 4,-x ; U, U)}}{d \sigma^{(\theta=-\pi / 4,+x ; U, U)}+d \sigma^{(\theta=-\pi / 4,-x ; U, U)}}$
$C_{y z}^{B T}=\frac{d \sigma^{(\theta=-\pi / 4,+z ; U, U)}-d \sigma^{(\theta=-\pi / 4,-z ; U, U)}}{d \sigma^{(\theta=-\pi / 4,+z ; U, U)}+d \sigma^{(\theta=-\pi / 4,-z ; U, U)}}$
$C_{z x}^{B T}=\frac{d \sigma^{(+z, \theta=\pi / 2 ; U, U)}-d \sigma^{(+z, \theta=0 ; U, U)}}{d \sigma^{(+z, \theta=\pi / 2 ; U, U)}+d \sigma^{(+z, \theta=0 ; U, U)}}$
$C_{z z}^{B T}=\frac{d \sigma^{(+z,+z ; U, U)}-d \sigma^{(+z,-z ; U, U)}}{d \sigma^{(+z,+z ; U, U)}+d \sigma^{(+z,-z ; U, U)}}$

Summary and conclusions

- Inclusion of a resonance is needed to explain the nonmonotonic behavior in the DCS of ϕ-meson photoproduction near threshold.
- Resonance with $J^{P}=3 / 2^{-}$is preferred in this study.
- The resonance seems to have a considerable amount of strangeness content.
- $D_{13}(2080)$ is ruled out based on the different sign of $A_{1 / 2} / A_{3 / 2}$.
- Further experiments, e.g. measurement of single and double polarizations, would be helpful to check our predictions.

THANK YOU!

